The Alan Turing Institute

Data-Centric Engineering at Scale: Developing an Al Data Engineer

Adam Sobey

Programme Director of Data-Centric Engineering, The Alan Turing Institute

Professor of Data-Centric Engineering, Maritime Engineering, University of Southampton

27th March 2025

Digitalisation for Decarbonisation

JAWS

- Power prediction software
- Commercialized by Shell Shipping and Maritime, licenced to Kongsberg
- Trim and draft optimisation
- 5% Fuel Saving (when combined with T-VOS potential for 18%)
- 62 vessels

T-VOS

- Voyage Optimisation Software
- Commercialised through Theyr
- Clients include Euronav, Spire, OpenMI and Lloyd's Register
- 5% fuel saving, 7% earlier arrival, 8% TCE – Compared to other software
- 2,151 vessels, potential for 30,000

Data Pipeline

- Developed data pipeline
- Bluebox: active data collection
- Developing reinforcement learning controller
- Increased data engineers from 1 to 16 (6 PhDs)

Digital Backbone

 Development of data models is becoming increasingly simple

However,

- Companies don't have the digital backbone to take advantage of these methods
- Scale-up is a challenge, how do we provide a bespoke data model to 10,000 ships?
- Need to automate the training, quality assurance and communication
- Can we develop an AI Data Engineer to create a bespoke data pipeline?

AI Data Engineer having a lunch break

The AI Data Pipeline

Automated data pipeline

A simple solution?

User prompt

Integrated development environment

Cloud service

What if we don't have an expert?

Requested Output

- Produce a concise summary of the agreed-upon pipeline architecture, highlighting its key components and connections.

- Provide a high-level plan and rationale for the design, explaining why it is wellsuited for the given data and use case.

- Estimate the cloud resources, implementation efforts, and associated costs, providing a rough breakdown and complexity rating.

- Generate a `PIPELINE_OVERVIEW.json` file, detailing the proposed complete architecture in JSON format with the following fields:

- "Platform": A cloud service provider's name if the cloud solution is the best, or "local server" if locally hosted servers are preferred.

- "Component 1": The first component in the pipeline framework, with AWS official name.

- "Component 2": The second component in the pipeline framework, with AWS official name. Continue until all required components are listed.

- "Implementation difficulties": A rating from 1 to 10 (lowest to highest).

- "Maintenance difficulties": A rating from 1 to 10 (lowest to highest).

Al Data Engineer

JSON with pipeline specification

User prompt

Single agent simulation

data-engineer (to primary_assistant)

exitcode: 1 (execution failed) Code output: ERROR: Could not find a version that satisfies the requirement pcl-python (from versions: none) ERROR: No matching distribution found for pcl-python

primary_assistant (to data-engineer)

The error message indicates that there is no package named `pcl-python` available on PyPI.

After further research, I found that the Point Cloud Library (PCL) does not have a Python wrapper. However, you can use the Open3D library in Python to read and process point cloud data.

Here's an updated version of the script:

Single agent simulation

data-engineer (to primary assistant)
auta-engineer (to primary_assistant)
exitcode: 0 (execution succeeded)
Code output:
nrimary assistant (to data-opginger)
primary_assistant (to data-engineer)
It seems that the execution was successful, but there is no code output provided.
However, based on the updated code I provided earlier, here's what we can expect as output:
1. A "cameral image ing" file will be created in the current working directory with a random image
T. A camera_image.jpg me will be created in the current working directory with a random image.
2. A "lidar_data.pcd.bin" file will be created in the current working directory with some dummy lidar data.
3. The `process_data()` function will generate some dummy lidar data and return it along with the camera image.
4. The `store_data()` function will create a CSV file named "processed_data.csv" in the current working directory, containing the
processed data.
If you'd like to see more specific output, please let me know what you're looking for (e.g., the contents of the "camera_image.jpg" file,
the dummy lidar data, etc.).
data-engineer (to primary_assistant)

TERMINATE

Data science engineer

User prompt

Infrastructure engineer

Business objective engineer

Machine learning engineer

Conversation delegation engineer

JSON with pipeline specification

DataEngineerAgent (to chat_manager):

Final output doesn't include most components.

Can not remember the required JSON format

Longer conversation chain: 4 proposals + 12 discussions (maximum allowed by the prompt)

Using claude-3.5-haiku, it costs 0.27\$

I'll complete the PIPELINE_OVERVIEW.json with the full details based on our previous consensus discussions: ```json "project": "Self-Driving Car Data Pipeline", "version": "1.0", "infrastructure": { "platform": "AWS Cloud-Native", "compute": { "type": "Kubernetes-Distributed", "primary_hardware": "NVIDIA DGX Systems", "gpu_specification": "A100 GPUs with Tensor Core Technology" }, "anomaly_detection": { "methodology": "Multi-layered Unsupervised Approach", "techniques": ["Autoencoder-based detection", "Isolation Forest algorithm" "anomalv indicators": | "Reconstruction error", "Statistical deviation" "data processing": { "sensor modalities": ["LiDAR", "Camera", "Radar". "GPS" "processing_framework": "Distributed Machine Learning" This JSON captures the key architectural decisions, compute infrastructure, anomaly detection strategy, and data peline. as discussed and agreed upon in our previous consensus steps.

Intrinsic Memory Agents: Efficient and Cost Saving Agents

Memory Limitations

- Most agents have limited context windows, meaning: they can only "remember" a certain amount of conversation history.
- As conversations grow longer, earlier exchanges get pushed out of their accessible memory.
- This creates a situation where agents might contradict their earlier statements or forget key information.
- They can also forget the users instructions.

Our AI Data Engineer is a goldfish

Current Solutions

RAG-based memory agents

Retrieve previous dialogues that are related to the current request.

Pros: Accurately reciting previous dialogues. Cons: Retrieving memories that are not integrated with other dialogues to form meaningful context.

RAG based memory agents

Current Solutions

RAG-based memory agents

Retrieve previous dialogues that are related to the current request.

Pros: Accurately reciting previous dialogues. Cons: Retrieving memories that are not integrated with other dialogues to form meaningful context.

RAG based memory agents

Current Solutions

RAG-based memory agents

Retrieve previous dialogues that are related to the current request.

Pros: Accurately reciting previous dialogues. Cons: Retrieving memories that are not integrated with other dialogues to form meaningful context.

– Summary based agents

Summarise all previous dialogues to create a contextual summary to be used as memory. Pros: contextual and meaningful Cons: summary doesn't have a specific aim, thus important information can be lost or not captured.

Summary based agents

Intrinsic Memory Agents

- MemoryAgent retains structured contextual memory.
- Memory can be pre-defined to make sure they are aligned with their and conversational objectives.
- Memory is updated after the agent generates a new output, maintaining consistency with previous context while keeping up-to-date with the new output.
- Memory is maintained on a per-agent basis. Thus, it allows agents to retain their autonomy, while still allowing general summarisations if desired.
- Allows other context reduction methods to reduce the cost of using AI models.

Produce a concise summary of the agreed-upon pipeline architecture, highlighting its key components and connections.

"layer": "Storage" "technology" ("Amazon S3", "storage_types". [

Provide a high-level plan and rationale for the design, explaining why it is wellsuited for the given data and use case.

"layer": "Storage", "technology": "Amazon S3",

Estimate the cloud resources, implementation efforts, and associated costs, providing a rough breakdown and complexity rating.

"estimated_infrastructure": {
 "compute_units": "Elastic",
 "storage_capacity": "Petabyte-scale",
 "monthly_cost_estimate": "\$15,000 - \$25,000"

"Platform": A cloud service provider's name if the cloud solution is the best, or "local server" if locally hosted servers are preferred.

"pipeline_architecture": {
 "name": "Self-Driving Car ML Data Pipeline",
 "platform": "AWS Cloud",
 "primary_components": [

Individual components: "Component 1": The first component in the pipeline framework, with AWS official name.

```
"layer": "Data Ingestion",
"technology": "Amazon Kinesis Data Streams",
"sources": [
        "6 Camera Streams",
        "1 LiDAR Point Cloud Stream"
],
"capabilities": [
        "Real-time sensor data streaming",
        "Millisecond-level processing",
        "High-frequency data capture",
        "High-frequency data capture",
        "Hulti-modal sensor integration"
],
"performance_metrics": {
        "throughput": "High-volume streaming",
        "latency": "<50ms",
        "data_types": ["Image", "Point Cloud"]
}
```

"Component 2": The second component in the pipeline framework, with AWS official name. Continue until all required components are listed.

Reached consensus faster, with shorter conversation chain: 4 proposals + 3 discussions (minimum required by the prompt)

Using claude-3.5-haiku, it costs 0.16\$

```
DataEngineerAgent (to chat manager):
I'll complete the PIPELINE_OVERVIEW.json file using the compret
```json
 "pipeline architecture": {
 "name": "Self-Driving Car ML Data Pipeline",
 "platform": "AWS Cloud".
 "primary components": [
 "layer": "Data Ingestion",
 "technology": "Amazon Kinesis Data Streams",
 "sources": [
 "6 Camera Streams",
 "1 LiDAR Point Cloud Stream"
 "capabilities": [
 "Real-time sensor data streaming",
 "Millisecond-level processing",
 "High-frequency data capture",
 "Multi-modal sensor integration"
 "performance metrics": {
 "throughput": "High-volume streaming",
 "latency": "<50ms",
 "data types": ["Image", "Point Cloud"]
 "layer": "Data Processing",
 "technology": ["AWS Glue", "Apache Spark"],
 "transformations": [
 "Image normalization",
 "Point cloud alignment".
 "Metadata extraction",
 "Data validation"
 "processing capabilities":
 "distributed computing": true,
 "scalability": "Horizontal scaling",
 "data preparation": "ML-ready datasets"
 This comprehensive JSON provides a detailed overview of the self-dr
```

"layer": "Storage", "technology": "Amazon S3", "storage\_types": [ "Raw sensor data". "Processed datasets". "Model artifacts" "storage\_characteristics": { "durability": "99.999999999%", "scalability": "Unlimited", "cost optimization": "Tiered storage" "layer": "Machine Learning", "technology": "Amazon SageMaker", "ml\_workflow": [ "Model training", "Distributed training", "Real-time inference", "Model monitoring" "ml capabilities": { "multi modal\_processing": true, "inference\_endpoints": "Low-latency", "model management": "Automated versioning" "architectural principles": [ "Scalability", "Real-time processing", "Cost-effectiveness", "High reliability" "compliance standards": [ "GDPR", "CCPA", "Automotive data protection" "estimated\_infrastructure": { "compute\_units": "Elastic", "storage\_capacity": "Petabyte-scale", "monthly\_cost\_estimate": "\$15,000 - \$25,000"

### **Conversation Delegation Agent**

Without intrinsic memory:

- Can't follow propose → discussion → consensus steps.
- 2. Always allows only 1 proposal instead of the requested 4
- 3. It jumps back and forth between the propose and discussion phases.

With intrinsic memory:

- 1. Can follow the steps
- 2. Manage to count the number of proposals and discussions correctly.
- 3. Doesn't jumps between steps.



Conversation delegation is more consistent

# **Working Agents**

Without intrinsic memory:

- Individual agents' personal opinions are not maintained – other agents easily influence them.
- 2. During the proposal step, all the follow-up proposals are extended from the first one.
- 3. During the discussion step, they can't remember their proposal, but again, always follow up with the previous discussions

With intrinsic memory:

- 1. Able to create their proposal, I can see different components being proposed.
- 2. Discussion can compare their own proposals and others.



Agents can focus more on their own proposals

### Conclusion

- Can maintain contextual consistency and retain relevant and important pre-defined information;
- Can improve efficiency in using the group chat based agentic AI framework – solves problems with a shorter amount of dialogues;
- Can improve conversational and output quality;
- Can reduce the cost of using LLM models in group chat based agentic Al framework.



#### The Alan Turing Institute



Data-Centric Engineering at Scale: Developing an Al Data Engineer

Thanks to: Ting Su, Sizhe Yuen and Ziyang Wang (they did all the hard work)

asobey@turing.ac.uk

