
Data-Centric Engineering at Scale: Developing an AI

Data Engineer

Adam Sobey

Programme Director of Data-Centric Engineering, The Alan Turing

Institute

Professor of Data-Centric Engineering, Maritime Engineering, University

of Southampton

27th March 2025

T-VOS
- Voyage Optimisation Software

- Commercialised through Theyr

- Clients include Euronav, Spire,

OpenMI and Lloyd’s Register

- 5% fuel saving, 7% earlier

arrival, 8% TCE – Compared to

other software

- 2,151 vessels, potential for
30,000

JAWS
- Power prediction software

- Commercialized by Shell

Shipping and Maritime, licenced

to Kongsberg

- Trim and draft optimisation

- 5% Fuel Saving (when combined

with T-VOS potential for 18%)

- 62 vessels

Digitalisation for Decarbonisation

Data Pipeline
- Developed data pipeline

- Bluebox: active data collection

- Developing reinforcement

learning controller

- Increased data engineers from 1

to 16 (6 PhDs)

Digital Backbone

– Development of data models is becoming

increasingly simple

However,

– Companies don’t have the digital backbone to take

advantage of these methods

– Scale-up is a challenge, how do we provide a

bespoke data model to 10,000 ships?

– Need to automate the training, quality assurance

and communication

– Can we develop an AI Data Engineer to create a

bespoke data pipeline?

AI Data Engineer having a

lunch break

The AI Data Pipeline

Raw data

Data

processing

Structured

data

AI/ML

model

Training/Fine

tuning

Insights

End user

interaction

The AI Data Pipeline

Raw

data

Data

processing

Structured

data

AI/ML

model

Training/Fine

tuning

Insights

End user

interaction
Multi-Expert

Interaction with AI

Automated data pipeline

generation

Code generation for training and

evaluation on feasibility tests.

Personality detection

from chat logs

Automatic dataset

generation for questions

and answering tasks..

The AI Data Pipeline

Raw

data

Data

processing

Structured

data

AI/ML

model

Training/Fine

tuning

Insights

End user

interaction

Automated data pipeline

generation

Automated data

pipeline

A simple solution?

Cloud serviceUser prompt Integrated development

environment

What if we don’t have an expert?

Large Language

Model

Cloud serviceUser prompt Integrated

development

environment

Requested Output
- Produce a concise summary of the agreed-upon pipeline architecture,

highlighting its key components and connections.

- Provide a high-level plan and rationale for the design, explaining why it is well-

suited for the given data and use case.

- Estimate the cloud resources, implementation efforts, and associated costs,

providing a rough breakdown and complexity rating.

- Generate a `PIPELINE_OVERVIEW.json` file, detailing the proposed complete

architecture in JSON format with the following fields:

- “Platform“: A cloud service provider’s name if the cloud solution is the best, or

“local server” if locally hosted servers are preferred.

- “Component 1”: The first component in the pipeline framework, with AWS

official name.

- “Component 2”: The second component in the pipeline framework, with AWS

official name. Continue until all required components are listed.

- “Implementation difficulties": A rating from 1 to 10 (lowest to highest).

- “Maintenance difficulties”: A rating from 1 to 10 (lowest to highest).

Single agent LLMs

JSON with

pipeline

specification

User prompt

AI Data Engineer

Single agent simulation

Single agent simulation

Multi-agentic LLMs

User prompt

Data science engineer

Infrastructure engineer

Business objective engineer

Machine learning engineer

Conversation delegation engineer

JSON with

pipeline

specification

Case Study: data pipeline generation

Final output doesn’t include most

components.

Can not remember the required

JSON format

Longer conversation chain: 4

proposals + 12 discussions

(maximum allowed by the prompt)

Using claude-3.5-haiku, it costs

0.27$

Intrinsic Memory

Agents: Efficient and

Cost Saving Agents

Memory Limitations

– Most agents have limited context windows,

meaning: they can only "remember" a certain

amount of conversation history.

– As conversations grow longer, earlier

exchanges get pushed out of their accessible

memory.

– This creates a situation where agents might

contradict their earlier statements or forget

key information.

– They can also forget the users instructions.
Our AI Data Engineer is a

goldfish

Current Solutions
– RAG-based memory agents

Retrieve previous dialogues that are related to

the current request.

Pros: Accurately reciting previous dialogues.

Cons: Retrieving memories that are not

integrated with other dialogues to form

meaningful context.

User

Query

Documents

Store

Prompt

LLM

Response

Context

RAG based memory agents

Current Solutions
– RAG-based memory agents

Retrieve previous dialogues that are related to

the current request.

Pros: Accurately reciting previous dialogues.

Cons: Retrieving memories that are not

integrated with other dialogues to form

meaningful context.

User

Query

Documents

Store

Prompt

LLM

Response

Context

RAG based memory agents

Current Solutions
– RAG-based memory agents

Retrieve previous dialogues that are related to

the current request.

Pros: Accurately reciting previous dialogues.

Cons: Retrieving memories that are not

integrated with other dialogues to form

meaningful context.

– Summary based agents

Summarise all previous dialogues to create a

contextual summary to be used as memory.

Pros: contextual and meaningful

Cons: summary doesn’t have a specific aim,

thus important information can be lost or not

captured. Summary based agents

User LLM Summary

Short-term

storage of

summaries

Intrinsic Memory Agents
– MemoryAgent retains structured contextual

memory.

– Memory can be pre-defined to make sure they

are aligned with their and conversational

objectives.

– Memory is updated after the agent generates a

new output, maintaining consistency with

previous context while keeping up-to-date with

the new output.

– Memory is maintained on a per-agent basis.

Thus, it allows agents to retain their autonomy,

while still allowing general summarisations if

desired.

– Allows other context reduction methods to reduce

the cost of using AI models.

Previous Agent

Next Agent

Current Agent

Conversation

Current Agents

Summary

Case Study: data pipeline generation

Produce a concise summary

of the agreed-upon pipeline

architecture, highlighting its

key components and

connections.

Case Study: data pipeline generation

Provide a high-level plan

and rationale for the design,

explaining why it is well-

suited for the given data and

use case.

Case Study: data pipeline generation

Estimate the cloud

resources, implementation

efforts, and associated

costs, providing a rough

breakdown and complexity

rating.

Case Study: data pipeline generation

“Platform“: A cloud service

provider’s name if the cloud

solution is the best, or “local

server” if locally hosted

servers are preferred.

Case Study: data pipeline generation

Individual components:

“Component 1”: The first

component in the pipeline

framework, with AWS official

name.

Case Study: data pipeline generation

“Component 2”: The second

component in the pipeline

framework, with AWS official

name. Continue until all

required components are

listed.

Case Study: data pipeline generation

Reached consensus faster, with

shorter conversation chain: 4

proposals + 3 discussions

(minimum required by the prompt)

Using claude-3.5-haiku, it costs

0.16$

Conversation Delegation Agent
Without intrinsic memory:

1. Can’t follow propose → discussion → consensus

steps.

2. Always allows only 1 proposal instead of the

requested 4

3. It jumps back and forth between the propose and

discussion phases.

With intrinsic memory:

1. Can follow the steps

2. Manage to count the number of proposals and

discussions correctly.

3. Doesn’t jumps between steps.

Conversation delegation is

more consistent

Working Agents

Without intrinsic memory:

1. Individual agents’ personal opinions are not

maintained – other agents easily influence them.

2. During the proposal step, all the follow-up proposals

are extended from the first one.

3. During the discussion step, they can’t remember

their proposal, but again, always follow up with the

previous discussions

With intrinsic memory:

1. Able to create their proposal, I can see different

components being proposed.

2. Discussion can compare their own proposals and

others.

Agents can focus more on their

own proposals

Conclusion
– Can maintain contextual

consistency and retain relevant and

important pre-defined information;

– Can improve efficiency in using the

group chat based agentic AI

framework – solves problems with

a shorter amount of dialogues;

– Can improve conversational and

output quality;

– Can reduce the cost of using LLM

models in group chat based agentic

AI framework.

Raw data

Data

processing

Structured

data

Data-Centric Engineering at Scale: Developing an AI

Data Engineer

Thanks to: Ting Su, Sizhe Yuen and Ziyang Wang (they did all the

hard work)

asobey@turing.ac.uk

	Default Section
	Slide 1: Data-Centric Engineering at Scale: Developing an AI Data Engineer
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Automated data pipeline
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Intrinsic Memory Agents: Efficient and Cost Saving Agents
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Data-Centric Engineering at Scale: Developing an AI Data Engineer

