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T-VOS
- Voyage Optimisation Software

- Commercialised through Theyr

- Clients include Euronav, Spire, 

OpenMI and Lloyd’s Register

- 5% fuel saving, 7% earlier 

arrival, 8% TCE – Compared to 

other software

- 2,151 vessels, potential for 
30,000

JAWS
- Power prediction software

- Commercialized by Shell 

Shipping and Maritime, licenced 

to Kongsberg

- Trim and draft optimisation

- 5% Fuel Saving (when combined 

with T-VOS potential for 18%)

- 62 vessels

Digitalisation for Decarbonisation

Data Pipeline
- Developed data pipeline

- Bluebox: active data collection

- Developing reinforcement 

learning controller

- Increased data engineers from 1 

to 16 (6 PhDs)



Digital Backbone

– Development of data models is becoming 

increasingly simple

However,

– Companies don’t have the digital backbone to take 

advantage of these methods

– Scale-up is a challenge, how do we provide a 

bespoke data model to 10,000 ships? 

– Need to automate the training, quality assurance 

and communication

– Can we develop an AI Data Engineer to create a 

bespoke data pipeline?

AI Data Engineer having a 

lunch break
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Code generation for training and 

evaluation on feasibility tests.

Personality detection 

from chat logs

Automatic dataset 

generation for questions 

and answering tasks.. 
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A simple solution?

Cloud serviceUser prompt Integrated development 

environment



What if we don’t have an expert?

Large Language 

Model

Cloud serviceUser prompt Integrated 

development 

environment



Requested Output
- Produce a concise summary of the agreed-upon pipeline architecture, 

highlighting its key components and connections.

- Provide a high-level plan and rationale for the design, explaining why it is well-

suited for the given data and use case.

- Estimate the cloud resources, implementation efforts, and associated costs, 

providing a rough breakdown and complexity rating.

- Generate a `PIPELINE_OVERVIEW.json` file, detailing the proposed complete 

architecture in JSON format with the following fields: 

- “Platform“: A cloud service provider’s name if the cloud solution is the best, or 

“local server” if locally hosted servers are preferred. 

- “Component 1”: The first component in the pipeline framework, with AWS 

official name. 

- “Component 2”: The second component in the pipeline framework, with AWS 

official name. Continue until all required components are listed. 

- “Implementation difficulties": A rating from 1 to 10 (lowest to highest). 

- “Maintenance difficulties”: A rating from 1 to 10 (lowest to highest). 



Single agent LLMs

JSON with 

pipeline 

specification

User prompt

AI Data Engineer



Single agent simulation



Single agent simulation



Multi-agentic LLMs

User prompt

Data science engineer 

Infrastructure engineer 

Business objective engineer

Machine learning engineer

Conversation delegation engineer

JSON with 

pipeline 

specification



Case Study: data pipeline generation

Final output doesn’t include most 

components.

Can not remember the required 

JSON format

Longer conversation chain: 4 

proposals + 12 discussions 

(maximum allowed by the prompt)

Using claude-3.5-haiku, it costs 

0.27$



Intrinsic Memory 

Agents: Efficient and 

Cost Saving Agents



Memory Limitations

– Most agents have limited context windows, 

meaning: they can only "remember" a certain 

amount of conversation history.

–  As conversations grow longer, earlier 

exchanges get pushed out of their accessible 

memory.

–  This creates a situation where agents might 

contradict their earlier statements or forget 

key information.

– They can also forget the users instructions. 
Our AI Data Engineer is a 

goldfish



Current Solutions
– RAG-based memory agents

Retrieve previous dialogues that are related to 

the current request.

Pros: Accurately reciting previous dialogues. 

Cons: Retrieving memories that are not 

integrated with other dialogues to form 

meaningful context.
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Current Solutions
– RAG-based memory agents

Retrieve previous dialogues that are related to 

the current request.

Pros: Accurately reciting previous dialogues. 

Cons: Retrieving memories that are not 

integrated with other dialogues to form 

meaningful context.

– Summary based agents

Summarise all previous dialogues to create a 

contextual summary to be used as memory.

Pros: contextual and meaningful

Cons: summary doesn’t have a specific aim, 

thus important information can be lost or not 

captured. Summary based agents 

User LLM Summary

Short-term 

storage of 

summaries



Intrinsic Memory Agents
– MemoryAgent retains structured contextual 

memory.

– Memory can be pre-defined to make sure they 

are aligned with their and conversational 

objectives.

– Memory is updated after the agent generates a 

new output, maintaining consistency with 

previous context while keeping up-to-date with 

the new output.

– Memory is maintained on a per-agent basis. 

Thus, it allows agents to retain their autonomy, 

while still allowing general summarisations if 

desired. 

– Allows other context reduction methods to reduce 

the cost of using AI models. 

Previous Agent

Next Agent

Current Agent

Conversation

Current Agents 

Summary



Case Study: data pipeline generation

Produce a concise summary 

of the agreed-upon pipeline 

architecture, highlighting its 

key components and 

connections.



Case Study: data pipeline generation

Provide a high-level plan 

and rationale for the design, 

explaining why it is well-

suited for the given data and 

use case.



Case Study: data pipeline generation

Estimate the cloud 

resources, implementation 

efforts, and associated 

costs, providing a rough 

breakdown and complexity 

rating.



Case Study: data pipeline generation

“Platform“: A cloud service 

provider’s name if the cloud 

solution is the best, or “local 

server” if locally hosted 

servers are preferred. 



Case Study: data pipeline generation

Individual components: 

“Component 1”: The first 

component in the pipeline 

framework, with AWS official 

name. 



Case Study: data pipeline generation

“Component 2”: The second 

component in the pipeline 

framework, with AWS official 

name. Continue until all 

required components are 

listed. 



Case Study: data pipeline generation

Reached consensus faster, with 

shorter conversation chain: 4 

proposals + 3 discussions 

(minimum required by the prompt)

 

Using claude-3.5-haiku, it costs 

0.16$



Conversation Delegation Agent
Without intrinsic memory:

1. Can’t follow propose → discussion → consensus 

steps.

2. Always allows only 1 proposal instead of the 

requested 4

3. It jumps back and forth between the propose and 

discussion phases.

With intrinsic memory:

1. Can follow the steps

2. Manage to count the number of proposals and 

discussions correctly.

3. Doesn’t jumps between steps. 

Conversation delegation is 

more consistent



Working Agents

Without intrinsic memory:

1. Individual agents’ personal opinions are not 

maintained – other agents easily influence them. 

2. During the proposal step, all the follow-up proposals 

are extended from the first one. 

3. During the discussion step, they can’t remember 

their proposal, but again, always follow up with the 

previous discussions

With intrinsic memory:

1. Able to create their proposal, I can see different 

components being proposed. 

2. Discussion can compare their own proposals and 

others. 

Agents can focus more on their 

own proposals



Conclusion
– Can maintain contextual 

consistency and retain relevant and 

important pre-defined information;

– Can improve efficiency in using the 

group chat based agentic AI 

framework – solves problems with 

a shorter amount of dialogues;

– Can improve conversational and 

output quality;

– Can reduce the cost of using LLM 

models in group chat based agentic 

AI framework.

Raw data

Data 

processing

Structured 
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