AlanTuring A
Institute

Data-Centric Engineering at Scale: Developing an Al
Data Engineer

Adam Sobey

Programme Director of Data-Centric Engineering, The Alan Turing
Institute

Professor of Data-Centric Engineering, Maritime Engineering, University
of Southampton

27th March 2025

Digitalisation for Decarbonisation

JAWS

- Power prediction software

- Commercialized by Shell
Shipping and Maritime, licenced
to Kongsberg

- Trim and draft optimisation

- 5% Fuel Saving (when combined
with T-VOS potential for 18%)

- 62 vessels

T-VOS

- Voyage Optimisation Software

- Commercialised through Theyr

- Clients include Euronav, Spire,
OpenMI and Lloyd’s Register

- 5% fuel saving, 7% earlier
arrival, 8% TCE — Compared to
other software

- 2,151 vessels, potential for
30,000

Data Pipeline

Developed data pipeline
Bluebox: active data collection
Developing reinforcement
learning controller

Increased data engineers from 1
to 16 (6 PhDs)

Digital Backbone

Development of data models is becoming
increasingly simple

However,

Companies don’t have the digital backbone to take
advantage of these methods

Scale-up is a challenge, how do we provide a
bespoke data model to 10,000 ships?

Need to automate the training, quality assurance
and communication

Can we develop an Al Data Engineer to create a
bespoke data pipeline?

Al Data Engineer having a
lunch break

The Al Data Pipeline

~__

= Raw data

[—

— Data

0G0 processing

-

—— | Structured

data

Training/Fine
tuning

———————————“

S N

T8

Insights

0

End user
interaction

—

Automatic dataset
generation for questions
and answering tasks..

Th € Al MaAakr~ N, .,)e Code generation for training and
Automated data pipeline evaluation on feasibility tests.

generation
— -~
Al/ML {)
model | |
Raw |
data) | |
| Insights |
o Data I : |
i processing

- N

-T I
| S%a |
—| Structured “ | L |
— data Training/Fine | Enduser |
tuning : |
Multi-Expert Personality detection I)

Interaction with Al from chat logs —_——— ——

Th€ Al MAakr~

Automated data pipeline

generation

Data
processing

Structured
data

=)

eline

Al/ML
model

i

Training/Fine
tuning

—
-

S N

T8

Insights

0

End user
interaction

———————————“

N

Automated data

pipeline

A simple solution?

® . aws

\—;’

User prompt Integrated development Cloud service
environment

What if we don’t have an expert?

‘ CURSOR

User prompt Large Language Integrated Cloud service
Model development
environment

Reqguested Output

- Produce a concise summary of the agreed-upon pipeline architecture,
highlighting its key components and connections.

- Provide a high-level plan and rationale for the design, explaining why it is well-
suited for the given data and use case.

- Estimate the cloud resources, implementation efforts, and associated costs,
providing a rough breakdown and complexity rating.

- Generate a PIPELINE_OVERVIEW.json' file, detailing the proposed complete
architecture in JSON format with the following fields:

- “Platform®: A cloud service provider’s name if the cloud solution is the best, or
“local server” if locally hosted servers are preferred.

- “Component 17: The first component in the pipeline framework, with AWS
official name.

- “Component 2”: The second component in the pipeline framework, with AWS
official name. Continue until all required components are listed.

- “Implementation difficulties": A rating from 1 to 10 (lowest to highest).

- “Maintenance difficulties”: A rating from 1 to 10 (lowest to highest).

JSON with
Al Data Engineer ‘ pipeline

specification

®
-

User prompt

Single agent simulation

data-engineer (to primary_assistant)

exitcode: 1 (execution failed)
Code output: ERROR: Could not find a version that satisfies the requirement pcl-python (from versions: none)
ERROR: No matching distribution found for pcl-python

primary_assistant (to data-engineer)

The error message indicates that there is no package named " pcl-python’ available on PyPI.

After further research, | found that the Point Cloud Library (PCL) does not have a Python wrapper. However, you can use the Open3D
library in Python to read and process point cloud data.

Here's an updated version of the script:

import os
import cv2
from open3d import *

Single agent simulation

data-engineer (to primary_assistant)

exitcode: 0 (execution succeeded)
Code output:

primary_assistant (to data-engineer)
It seems that the execution was successful, but there is no code output provided.
However, based on the updated code | provided earlier, here's what we can expect as output:

1. A "camera_image.jpg" file will be created in the current working directory with a random image.
A "lidar_data.pcd.bin" file will be created in the current working directory with some dummy lidar data.

The “process_data()" function will generate some dummy lidar data and return it along with the camera image.

BowoN

The ~store_data()" function will create a CSV file named "processed_data.csv" in the current working directory, containing the
processed data.

If you'd like to see more specific output, please let me know what you're looking for (e.g., the contents of the "camera_image.jpg" file,
the dummy lidar data, etc.).

data-engineer (to primary_assistant)

TERMINATE

Data science engineer
Infrastructure engineer

JSON with
Business objective engineer ‘ pipeline

specification

®
-

User prompt

Machine learning engineer

Conversation delegation engineer

Case Study: data pipeline generation

DataEngineerAgent (to chat_manager):

Final output doesn’t include most _ . _) _—
I'll complete the PIPELINE_OVERVIEW.json with the full details based on our previous consensus discussions:
components. ~~ron
{

"project": "Self-Driving Car Data Pipeline",
"version": "1.0",

Can not remember the required iR —
JSON format ' : istributed”,

"primary_hardware": "NVIDIA DGX Systems",
"gpu_specification": “A18® GPUs with Tensor Core Technology"

Longer conversation chain: 4 ‘meth Llti-layered Unsupervised Approach”,

“techniques": [
"Autoencoder-based detection",

pr0p05a|S + 12 dlSCUSSIOﬂS : "Isolation Forest algorithm"
(maximum allowed by the prompt)

'
"anomaly_indicators": [

"Reconstruction error",
"Statistical deviation"

]
}

Using claude-3.5-haiku, it costs "dats processingit {
0.27$ *Canerat,

"Radar",
"GPS"
1,
"processing_framework": "Distributed Machine Learning"

This JSON captures the key architectural decisions, compute infrastructure, anomaly detection strategy, and data
peline, as discussed and agreed upon in our previous consensus steps.

Intrinsic Memory
Agents: Efficient and
Cost Saving Agents

Memory Limitations

— Most agents have limited context windows,
meaning: they can only "remember" a certain
amount of conversation history.

— As conversations grow longer, earlier
exchanges get pushed out of their accessible
memory.

— This creates a situation where agents might
contradict their earlier statements or forget
key information.

— They can also forget the users instructions.

Our Al Data Engineer is a
goldfish

O [N\
User @ Documents
Current Solutions ; !
— RAG-based memory agents Query 0 > @ Store
Retrieve previous dialogues that are related to l
the current request.
Pros: Accurately reciting previous dialogues. "T'@ Context
Cons: Retrieving memories that are not
integrated with other dialogues to form Prompt
meaningful context. |
%% LLM
>_... Response

RAG based memory agents

Current Solutions

— RAG-based memory agents

Retrieve previous dialogues that are related to
the current request.

Pros: Accurately reciting previous dialogues.
Cons: Retrieving memories that are not
integrated with other dialogues to form
meaningful context.

',-® Context
w Prompt
%\% LLM
S Response

RAG based memory agents

Current Solutions

— RAG-based memory agents

O=
O=

Retrieve previous dialogues that are related to /' 0=

the current request. 0
Pros: Accurately reciting previous dialogues. %l\? L o=
Cons: Retrieving memories that are not o=

integrated with other dialogues to form UsEr LLM Summary
meaningful context. —

Oc=
Oc=
Oc=

O=
O=

— Summary based agents

Summarise all previous dialogues to create a

contextual summary to be used as memory. Short-term
Pros: contextual and meaningful storage of
Cons: summary doesn’t have a specific aim, summaries

thus important information can be lost or not
captured. Summary based agents

Intrinsic Memory Agents

MemoryAgent retains structured contextual
memory.

Memory can be pre-defined to make sure they
are aligned with their and conversational
objectives.

Memory is updated after the agent generates a
new output, maintaining consistency with
previous context while keeping up-to-date with
the new output.

Memory is maintained on a per-agent basis.
Thus, it allows agents to retain their autonomy,
while still allowing general summarisations if
desired.

Allows other context reduction methods to reduce
the cost of using Al models.

Current Agent

Previous Agent

Conversation \

‘C .—

), —
‘- [-’ R
Next Agent Current Agents
Summary

Case Study: data pipeline generation

DataEngineerAgent (to chat_manager):
I'l1l complete the PIPELINE_OVERVIEW.json file using the comprel

**json

"pipeline_architecture": {
"name": "Self-Driving Car ML Data Pipeline",
"platform”: "AWS Cloud",
"primary_components": [
{

"layer": "Data Inoeas =
"technology" "Amazon Kinesis Data Streams"
"sources": [

"6 Camera Streams",

"1 LiDAR Point Cloud Stream"

Produce a concise summary
of the agreed-upon pipeline

architecture, highlighting its e
key components and e T
connections.

v
"capabilities": [
"Real-time sensor data streaming",
"Millisecond-level processing",

"latency":
"data_types": ["Image", "Point Cloud"]

"layer": "Data Provessing”,
"technology"” .. ["AWS Glue", "Apache Spark"].
"transformations™i{

"Image normalization",

"Point cloud alignment",

"Metadata extraction",

"Data validation"

v

"processing_capabilitie
"distributed_computing": true,
"scalability": "Horizontal scaling”,
"data_preparation": "ML-ready datasets"

"technology"("Amazon S3",
"storage_types™ i
"Raw sensor data",
"Processed datasets",
"Model artifacts”

1.

"storage_characteristics”: {
"durability": 9.999999999%" ,
"scalability": "Unlimited",
"cost_optimization": "Tiered storage"

"layer": "Machi
"technology"
"ml_workf Low" et
odel training",
"Distributed training",
"Real-time inferenc
"Model monitoring"

g
Amazon SageMaker",
r

capabilities": {

'multi_modal_processing": true,
"inference endpoints": "Low-latency",
"model_management": "Automated versioning"

}
1,
"architectural_principles": [
"Scalability",
"Real-time processing",
"Cost-effectiveness",
"High reliability"
1,
"compliance_standards": [
"GDPR" ,
"CCPA",
"Automotive data protection"

1,

"estimated_infrastructure": {
"compute_units": "Elastic",
"storage_capacity": "Petabyte-scale",
"monthly_cost_estimate": "$15,000 - $25,000"

This comprehensive JSON provides a detailed overview of the self-dr

Case Study: data pipeline generation

Provide a high-level plan
and rationale for the design,
explaining why it is well-
suited for the given data and
use case.

DataEngineerAgent (to chat_manager):
I'l1l complete the PIPELINE_OVERVIEW.json file using the comprel

**json

"plpe‘Llne architecture": {
. Self-Drl\ung [ar ML Data Pipeline",
"platform”: "AWS Cl
"primary_components" [
{

"layer": "Data Ingestion",

"technology": "Amazon Kinesis Data Streams",

"sources": [
"6 Camera Streams",
"1 LiDAR Point Cloud Stream"

1,

"capabflities": [
"Real-time sensor data streaming",
"Millisecond-level processing",
"High-frequency data capture",
“Mylti-modal sensor integratinn®

1.

"performance_metrics": {
"throughput": "High-volume streaming"”,
"latency":

"data_types": ["Image", "Point Cloud"]

"layer": "Data Processin
"technology": ["AWS Glue",
"transfemotiuns ol
"Image normalization",
"Point cloud alignment",
"Metadata extraction",
“Nata validation"

Apache Spark"l,

v

"processing_capabilitie
"distributed_computing": true,
"scalability": "Horizontal scaling”,
"data_preparation": "ML-ready datasets"

"layer": "Storage",
"technology": ""Amazon S3",
"storageriypes©:
'Raw sensor data'
"Processed datasets',
"Model artifacts”

1.

"storage_characteristics”: {
"durability": 9.999999999%" ,
"scalability": "Unlimited",
"cost_optimization": "Tiered storage"

"layer": "Machine Learning",
"tarl "r UAmacun-SageMaker”,

odel training",
"Distributed training",
"Real-time inferenc
"Model monitoring"

capabilities": {

'multi_modal_processing": true,
"inference endpoints": "Low-latency",
"model_management": "Automated versioning"

}

1,

"architectural_principles": [
"Scalability",
"Real-time processing",
"Cost-effectiveness",
"High reliability"

1,

"compliance_standards": [
"GDPR" ,
"CCPA",
"Automotive data protection"

1,

"estimated_infrastructure": {
"compute_units": "Elastic",
"storage_capacity": "Petabyte-scale",
"monthly_cost_estimate": "$15,000 - $25,000"

This comprehensive JSON provides a detailed overview of the self-dr

Case Study: data pipeline generation

Estimate the cloud
resources, implementation
efforts, and associated
costs, providing a rough
breakdown and complexity
rating.

"estimated_infrastructure": {
"compute_units": "Elastic",

"storage_capacity": "Petabyte-scale",
"monthly_cost_estimate": "$15,008 - $25,000"

Case Study: data pipeline generation

“Platform®; A cloud service

provider’s name if the cloud wpipeline_architecture’: {
- 1 “ " ": "Self-Drivi Car ML Data Pipeline",
solution is the best, or “local wplatform®s "aS Clood™ T

"primary_components": [

server” if locally hosted
servers are preferred.

Case Study: data pipeline generation

"layer": "Data Ingestion",
"technology": "Amazon Kinesis Data Streams",
"sources": [

Individual components: 3 Comed patmetioud Stremn
“Component 1”: The first N apabilitiss"s |

component in the pipeline i\ secanatevel processing’s
framework, with AWS official MUt i-mogal sensor integration”

1,
name. "performance_metrics": {
"throughput": "High-volume streaming",
"latency": "<58ms",
"data_types": ["Image", "Point Cloud"]
}

Case Study: data pipeline generation

"layer": "Data Processing”,
"technology": ["AWS Glue", "Apache Spark"],
"transformations": [

"Image normalization",

"pPoint cloud alignment",

“Component 2”: The second "Data vatidation® '
component in the pipeline ']'r'Jm:;s?sygEt:chilitiE?"=_.{

istributed computing": true,
framework, with AWS official e ot A el g S
name. Continue until all
required components are

IlSted "layer": "Machine Learning",
"technology": "Amazon SageMaker",
"ml_workflow": [
"Model training",
"Distributed training",
"Real-time inference",

"layer": "Storage",
"technology": "Amazon 53",
"storage_types": [

"Model monitoring"

1.
"ml_capabilities": {
"multi_modal_processing": true,
"inference_endpoints": "Low-latency",
"model_management": "Automated versioning"

"Raw sensor data",
"Processed datasets",
"Model artifacts"

]I

}

Case Study: data pipeline generation

DataEngineerAgent (to chat_manager):
I'l1l complete the PIPELINE_OVERVIEW.json file using the comprel
Reached consensus faster, with L
shorter conversation chain: 4
proposals + 3 discussions

(minimum required by the prompt)

"pipeline_architecture": {
"name": "Self-Driving Car ML Data Pipeline",
"platform”: "AWS Cloud",
"primary_components": [
{

"layer": "Data Ingestion",
"technology": "Amazon Kinesis Data Streams",
"sources": [

"6 Camera Streams",

"1 LiDAR Point Cloud Stream"

"capabilities": [
"Real-time sensor data streaming",
"Millisecond-level processing",
"High-frequency data capture",
"Multi-modal sensor integration"

Using claude-3.5-haiku, it costs
0.16%

1.
"performance_metrics": {
"throughput": "High-volume streaming",
"latency":
"data_types": ["Image", "Point Cloud"]

"layer": "Data Processin
"technology": ["AWS Glue",
"transformations": [
"Image normalization",
"Point cloud alignment",
"Metadata extraction",
"Data validation"

Apache Spark"l,

v

"processing_capabilitie
"distributed_computing": true,
"scalability": "Horizontal scaling”,
"data_preparation": "ML-ready datasets"

"layer": "Storage",
"technology": "Amazon S3",
"storage_types":
"Raw sensor data",
"Processed datasets",
"Model artifacts”

1.

"storage_characteristics”: {
"durability": 9.999999999%" ,
"scalability": "Unlimited",
"cost_optimization": "Tiered storage"

"layer": "Machine Learning",
"technology": '
"ml_workflow
odel training",
"Distributed training",
"Real-time inferenc
"Model monitoring"

capabilities": {

'multi_modal_processing": true,
"inference endpoints": "Low-latency",
"model_management": "Automated versioning"

}
1,
"architectural_principles": [
"Scalability",
"Real-time processing",
"Cost-effectiveness",
"High reliability"
1,
"compliance_standards": [
"GDPR" ,
"CCPA",
"Automotive data protection"

1,

"estimated_infrastructure": {
"compute_units": "Elastic",
"storage_capacity": "Petabyte-scale",
"monthly_cost_estimate": "$15,000 - $25,000"

This comprehensive JSON provides a detailed overview of the self-dr

Conversation Delegation Agent

Without intrinsic memory:

1. Can’tfollow propose - discussion - consensus
steps.

2. Always allows only 1 proposal instead of the
requested 4

3. It jumps back and forth between the propose and
discussion phases.

With intrinsic memory: : —
Conversation delegation is

1. Can follow the steps more consistent

2. Manage to count the number of proposals and
discussions correctly.

3. Doesn’t jumps between steps.

Working Agents

Without intrinsic memory:

1. Individual agents’ personal opinions are not
maintained — other agents easily influence them.

2. During the proposal step, all the follow-up proposals
are extended from the first one.

3. During the discussion step, they can’t remember
their proposal, but again, always follow up with the
previous discussions

With intrinsic memory:

Agents can focus more on their

1. Able to create their proposal, | can see different own proposals
components being proposed.

2. Discussion can compare their own proposals and
others.

Conclusion

— Can maintain contextual
consistency and retain relevant and
important pre-defined information;

Raw data

(L0

— Can improve efficiency in using the
group chat based agentic Al —
framework — solves problems with 500 Data.

a shorter amount of dialogues; il processing

B

— Can improve conversational and
output quality;

— Can reduce the cost of using LLM
models in group chat based agentic
Al framework.

Structured
data

The
AlanTuring
Institute

Foundation

Data-Centric Engineering at Scale: Developing an Al
Data Engineer

Thanks to: Ting Su, Sizhe Yuen and Ziyang Wang (they did all the
hard work)

asobey@turing.ac.uk

	Default Section
	Slide 1: Data-Centric Engineering at Scale: Developing an AI Data Engineer
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Automated data pipeline
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Intrinsic Memory Agents: Efficient and Cost Saving Agents
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Data-Centric Engineering at Scale: Developing an AI Data Engineer

