

Mitigation technology and environmental impact from ammonia bunkering release

Project Co-led by **IHPC** (Institute of High Performance Computing) and **TMSI** (Tropical Marine Science Institute)

Dr Liu Ming MESD 06 Nov 2023

Overview of ammonia

- Theoretically carbon free fuel
- Handled as a "saturated liquid" for all practical operations
- Toxic to human and environment

Exposure	10 min	30 min	1h	4h	8h
AEGL-1	30 ppm	30 ppm	30 ppm	30 ppm	30 ppm
AEGL-2	220 ppm	220 ppm	160 ppm	110 ppm	110 ppm
AEGL-3	2700 ppm	1600 ppm	1100 ppm	550 ppm	390 ppm
AEGL-1	Notable discomfort, irritation, or certain asymptomatic non-sensory effects. Effects are not disabling and are transient and reversible upon cessation of exposure.				
AEGL-2	Irreversible or other serious, long-lasting adverse health effects of an impaired ability to escape				
AEGL-3	Life-threatening health effects or death				

Olfac dete	ctory ction	IET (60 min) Disabling	IET (1 min) Disabling	LET (30 min) LET Lethal L	^r (1 min) .ethal		FL
1 ppm	5 ppm	350 ppm	1500 ppm	4800 ppm 25	 400 ppm	15% 28%	<mark>6 100</mark> %
				1			
1E-06	1E-05	1E-04	1E-03	1E-02	1E-01	Sourc	1E-00 ce: Ineris

2

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved.

Ammonia release and dispersion

- LOC happens with sufficient driving force (pressure, momentum)
- Liquid ammonia column break bulk and flash into fine mist with huge surface area
- With rapid cooling, the fine droplets form aerosol with air and produce a "heavy" white cloud
- The cloud "clings" to the surface for some time until it gains enough dilution, heat and buoyancy to become gaseous ammonia vapor that "disappears"

Mitigate ammonia release - overview

Reduce Likelihood		Release		F	Release Severity	
<u>Preventive</u> : reduce likelihood of generating hazardous vapour cloud		Mitigation		<u>Protective</u> : reduce magnitude of release and exposure to personnel, properties, env		
Pre-release Mitigation			Post-release Mitigation			
Inherent safer design Inventory reduction Process attenuation e.g., bunkering NH ₃ as APSL, reduce operating	Engineering design Physical integrity e.g., compatible material, double-walled tanks. Emergency control e.g., emergency relief	Management Operating procedures Training Audits and inspection Equipment testing Management of change	Early detection Detection Containment, Countermeasu	h & warning by sensors Suppression, tres	Emergency response On-site communications Emergency shutdown equipment & procedures Site evacuation Safe havens	
pressures and flowrate.systemMaintenLocation IsolationEmergency reliefSecurityLocation IsolationtreatmentElimine.g., Site NH3 bunkeringe.g., elevated stack to aidEliminat isolated anchorages,dispersion, flares.releasJarge buffer zonesSpill containmentP. I	Eliminate cause of release	 Water sp curtain Foam Dilution Physical b 	oray, mist, fog, arrier	PPE Medical treatment On-site ERP, training and drills.		
e.g., dikes, trays Emergency Isolation e.g. ESD, SmartHose®		Reduce likelihood of release Reduce impact of	Reduce sev concentrati	Reduce severity of consequence (exposure x concentration) after occurrence of a LOC eve		

4

Confidential

Mitigate ammonia release – bunkering scenario

Prevent formation of ammonia cloud

1. Detect Release

5

Confidential

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved

Case study 1 – change flowrate and hose diameter

Table Input parameters for case study

Parameters	Value
Location	Anchorage 28 ASSPU
Bunker Vessel Type	17,500 m ³ NH ₃ carrier
Container Chin Ture	14,800 TEU dual fuel
Container Snip Type	container ship
Temperature	-33.4°C, 1 atm
Connection	8" (203mm) hose, 40m long
Flowrate	1,000 to 1,500m ³ /h
Hose diameter	8 inch
Orifice size	8 inch (full bore rupture)
Release direction	Vertical downward
Release elevation*	18.35 m
Release duration	60 s
Wind direction	Perpendicular to ammonia fall
Weather	Day 3C
	User-defined model using
Scenario in PHAST	parameters from short pipe
	(ø8") rupture

Use the worst-case scenario with large quantity of ammonia release

Far field simulation without considering local geometry and physical obstruction

Use lethality footprint at different altitude to indicate the effectiveness of mitigation

Case study 1 – change flowrate and hose diameter

7

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved.

Case study 2 – use containment on sea surface

60 seconds release from 8" hose rupture $(1,000m^{3}/h)$ into sea vs onto containment on sea surface

Size: 1m x 30m², Material: Polyurethane / PVC / combination of synthetic material (containment)

Case study 2 – use containment on sea surface

At sea level

- The containment does not reduce 3%, 10% and 50% lethality footprint
- Only the 99% lethality footprint is reduced

Case study 2 – use containment on sea surface

NANYANG TECHNOLOGICAL UNIVERSITY | SINGAPORE

10

Confidential

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved

Case study 3 - use containment on vessel decks

sea vs onto containment on sea

Leak from outlet manifold to be contained on the vessels' decks

Case study 3 - use containment on vessel decks

Release directly onto deck

Release onto deck with containment (2 x 20m²)

*Footprints taken on deck level

Moving forward – barrier concept

 Use the taller & longer receiving vessel as a physical barrier

Moving forward – barrier concept

14

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved.

Environmental impact study on ammonia release

"Bunkering for change: Knowledge preparedness on the environmental aspect of ammonia as a marine fuel", Mengli Chen, et al, Science of the Total Environment 907 (2024) 167677

- Global nitrogen cycling
 Essential to ecosystem and the overall health of our planet.
- Alteration by bunkering Release due to bunkering may greatly alter the global nitrogen cycle.
- Key Knowledge gaps Quantify the environmental impact.

More gaps suggested in the paper.

MESD Centre of Excellence © 2022. Nanyang Technological University. All rights reserved.

Conclusion and future work

- Containment on sea surface
 - Unable to reduce lethality footprints at sea level
 - Significantly reduce lethality footprints at deck level
- Containment on deck
 - Reducing pool radius on deck by 10 times, and reduce lethality footprint by > 90%
- Further advanced simulation
 - Modelling and simulation of ammonia interaction with sea water for both near-field and far-field
- Further validation work
 - To seek experimental support or use surrogate molecules
- Further environmental impact study
 - Experiment to quantify rates of marine nitrogen cycle and water quality model

