

Centre for Offshore Research and Engineering (CORE) at Maritime Institute @ NUS

Y. K. Chow
Director, Maritime Institute @ NUS
Executive Director, CORE

Y.S. Choo Director (Research), CORE

Mission and Key Objectives

Mission

To be a leading Centre in research & development, and education & manpower training for the advancement of the offshore and maritime industry.

Key Objectives

- To develop strategic research and development programmes that result in knowledge generation and intellectual property creation
- To develop education programmes and manpower training for Singapore's offshore and maritime industry
- To actively promote R&D collaboration with industry, A*STAR research institutes and tertiary institutions to transform Singapore into an offshore and maritime hub of global significance

Keppel Professorship

- Prof Torgeir Moan, NTNU (Dec 2002 Dec 2006)
- Prof Andrew Palmer

Lloyd's Register Educational Trust Professorship

- Prof Peter Marshall, formerly Shell (Mar 2007 Mar 2009)
- Prof Choo Yoo Sang

Maritime Technology Professorship (MPA)

- Prof Rodney Eatock Taylor, Oxford University
- Prof Paul Taylor, Oxford University
- Prof John Dempsey, Clarkson University
- Dr John Halkyard, formerly Technip

EDB Subsea Engineering Professorships Programme

- Dr Bil Loth, WD Loth and Company

Major Research Programmes

- Offshore Technology Research Programme (A*STAR, MPA)

 15 projects including smart sensing; re-assessment, retrofitting, and repair of offshore structures; intelligent deepwater mooring systems; LNG sloshing; subsea processing; AUV; methane hydrates; pipeline-soil interaction; jack-up foundations; plate anchors; torpedo anchors
- Multiphase Flow Analysis for Downhole Oil & Gas Equipment (A*STAR)

7 projects addressing constitutive and numerical modeling of multiphase flow, and multiphase flow processes and issues concerning flow assurance; heavy oil production and downhole equipment design

■ Materials Innovation for Marine & Offshore Industry (A*STAR) 6 projects covering mainly design and analysis of composite risers and joints; fatigue, durability and impact survivability of composite risers; study on novel composite materials for risers

JIP on Static and Fatigue Strength of Grouted Tubular Joints

Project Sponsors: American Bureau of Shipping, ClassNK, Densit, Lloyd's Register, McDermott International, Petronas Carigali, Tata Steel

Results: Large-scale laboratory tests demonstrate that the presence of in-filled grout changes significantly the joint stiffness and failure mode. Numerical analyses able to capture the observed joint behavior. Current ISO recommendations significantly under-predict joint strength.

Research scope and details for Phase 2 of JIP being finalised.

InSafe Joint Industry Project

IMPROVED GUIDELINES FOR THE PREDICTION OF GEOTECHNICAL PERFORMANCE OF SPUDCAN FOUNDATIONS DURING INSTALLATION AND REMOVAL OF JACK-UP UNITS

Work Scope

- Site investigation & lab testing
- Spudcan bearing capacity predictions; punch-through
- Spudcan operation related issues

Project Team

Project Sponsors

American Bureau GEO-Danish **Noble Drilling Geotechnical Institute** of Shipping

Braemar Falconer GL Noble Denton

ConocoPhillips **Global Maritime**

DONG Energy HSE UK

ENSCO Keppel Offshore &

International Marine

ExxonMobil Maersk Drilling

Matthews Daniel Fugro Singapore

Premier Oil & Gas Services

Premium Drilling/COSL

Shell UK Limited

Transocean

(Global Santa Fe)

Joint Industry Projects (JIPs)

JIP on Improved Partial Joint Penetration (PJP-plus) Welded Tubular Joints

Objective: To examine the fatigue performance of a new type of welding details (PJP+) for critical tubular joints in offshore platforms subjected to cyclic actions.

Project Sponsors:

JIP on Spudcan-Pile Interaction

Objective: To carry out centrifuge model tests and large displacement Finite Element simulations to study the mechanism of spudcan-pile interaction and propose rational design methodology.

Project Sponsors:

JIP on Spudcan-Footprint Remediation

Objective: To investigate the effectiveness of various mitigation measures through centrifuge physical modeling and advanced numerical simulations.

Project Sponsors:

Some Challenges in Deepwater Technology

Coupled Response of Side-by-Side Operations

Source: seabreezes.co.im

Motivation: Concerns for floating systems during side-by-side operations which can result in highly nonlinear response

Approach: DIFFRACT and OpenFOAM

development

Example: Free Surface Resonance in narrow

gap for FPSO/FLNG and tanker operations

Surface Resonance in Gap for Head Sea

Surface Resonance in Gap for Beam Sea

Innovative Structural Systems

Motivation: Structural weight and strength important for floating structures

Approach: Maximise structural performance through innovative schemes (e.g. different concrete/grout, J-hooks, interface texturing)

Example: Integrated Steel-Concrete-Steel System Through Laser Welding

Type of beam	Ultimate Load
	kN
Plain Grout	2.6
Grout with top +	3.8
bottom plates	
Integrated SCS CSD-1	24.7
Integrated SCS CDD-1	3 6

Results: Highly ductile behaviour (CDD-1) with ultimate strength **1300**% higher than plain grout specimen.

Possible Applications: double-hull side shells or bottom, impact barrier, fire & blast wall

Structural Integrity Management (SIM) of Offshore Systems

Motivation: Structural/Asset integrity is critical for safe operations of fixed and floating offshore systems.

Progress: Systems approach on effects of extreme environmental events on structural and foundation responses.

Example: Re-assessment of offshore platforms

Extreme wave representation

SIM Related R&D in CORE: Structural health monitoring, fibre optic- and laser-based sensing, fatigue & fracture, strength enhancement

Pushover analysis

Effects of Current Blockage on Offshore Structures

Centre for Offshore Research and Engineering Faculty of Engineering

Motivation:

Improved prediction of wave and current loadings on compliant towers

- partly in response to BP Macondo accident, push for dry tree solutions
- forces and responses are over-predicted using conventional approach

Re-analysis of tank tests from Allender & Petrauskas - Chevron (OTC 1987), 2.5m/s current + regular waves

Design approach for compliant towers: loads resisted by combination of dynamics + strength

Findings:

Current only → blockage
Wave + Current → extra blockage

Offshore Riser Arrays

Objective

Accurate and efficient numerical modeling of vortex induced vibration (VIV) suppression devices for riser arrays at high Reynolds number:

- Determine mutual interactions of risers
- Find elegant and effective means to suppress VIV

Research Methodology

Nonlinear Fluid-Structure Interaction

- Novel iterative staggered procedure
- Strong inertial-coupling effects for long risers at mass ratio m* ≈ O(1)

Fatigue Analysis and Life Prediction of Composite Risers

Objective

To investigate the long-term behavior and life of composite risers under cyclic fatigue loadings in seawater environment.

Research Methodology

- Fatigue tests of composite materials used in risers under different stress ratios;
- Fatigue model based on master curves and Puck's criterion for long-term and cyclic loading conditions;
- Damage mechanisms to account for damage accumulation during fatigue loadings;
- Seawater environment to be considered in the fatigue analysis.

Composite riser (joint)

Fatigue master curve

Plate Anchors for Permanent Mooring in Deepwater

Methodology:

- Geotechnical centrifuge experiments
- Large displacement finite element analysis

Key considerations:

- Loss of embedment during keying reduces anchor capacity due to shallower embedment in weaker soil
- Soil remoulding during keying will further degrade anchor capacity
- Long term capacity of plate anchor

Source: ATP Oil and Gas Corporation

Deepwater Dynamically Installed Anchors

Objective

To improve the current design methodology for dynamically installed anchors by focusing on quantification of design unknowns and installation uncertainties.

Anchor - Current Interaction

Computational Fluid Dynamics
 Simulations

Anchor - Soil Interaction

- Physical modelling using geotechnical centrifuge
- Large displacement finite element simulations

Source: Araujo, J. B. d., R. D. Machado and C. J. d. M. Junior, OMAE2004-51201.

Simulation of Floatover **Operations**

Motivation: Floatover operations increasingly important for offshore/near-shore integration of offshore systems

Progress: Time domain simulations including impact being developed

S4 4

Floatover Installation for offshore platform (Courtesy: McDermott)

Floatover Installation for Kikeh Spar (Courtesy: Technip)

Time domain floatover simulation integrated with DIFFRACT

Thank you