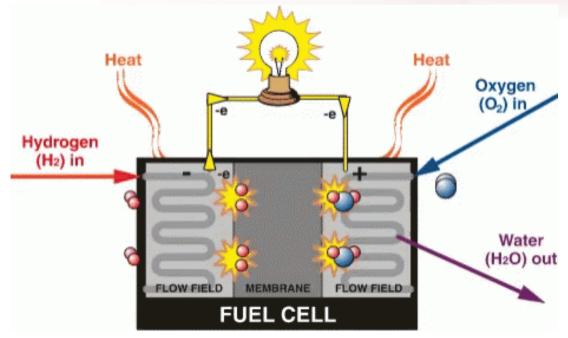


Energy Research Institute @ NTU

Potential application of fuel cell in harbor craft


Energy Smart, Research & Innovation.

erian.ntu.edu.sg

d-erian@ntu.edu.sg

Energy Research Institute @ NTU (ERI@N) 1 CleanTech Loop, #06-04 CleanTech One, Singapore 637141 Phone: (65) 6592 1786 / 2468 Fax: (65) 6694 6217

An electro-chemical device that converts hydrogen and oxygen into heat and power

Water is the only by-product of a closed-loop cycle

Low/No environmental impact

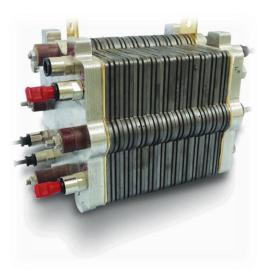
No oil or heavy metal

Temperature range

Introduction

Types of fuel cell and their characteristics

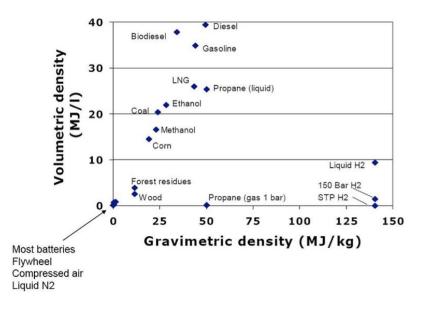
Type of fuel cell	Operating temperature	Fuel	Electrical efficiency			
Solid oxide FC	800 to 1000 °C	H2 to NG	45 to 65%			
Pros: Fuel flexibility, high efficiency, can be combined with gas turbine, high grade heat Cons: Limited power modulation, long start-up time						
Molten carbonate FC	About 650 °C	H2 to NG	45 to 50%			
Pros: Fuel flexibility, high efficiency, high grade heat Cons: Low power density, long start-up time, corrosive electrolyte						
Phosphoric acid FC	About 200 °C	H2	35 to 42%			
Pros: Mature, higher tolerance of impurities, medium grade heat Cons: Low power density, relatively long start-up time						
Alkaline FC	90 to 100 °C	H2	35 to 40%			
Pros: Quick start-up, mature Cons: Sensitive to CO_2 and other impurities, low grade heat						
Polymer electrolyte FC	60 to 90 °C	H2	35 to 40%			
Pros: Quick start-up Cons: Sensitive to impurities, low grade heat, expensive catalyst required						


4

Comparison against other technologies Vs. diesel generator

Advantages:

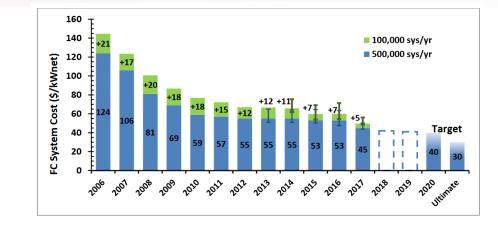
- High part load electrical efficiency
- Near zero NO_x , SO_x and PM emissions
- Low or zero CO_2 emission (depending on fuel), possible to reduce by 20-30%
- Low noise (~75 dB@1m)
- Few moving parts
- Low maintenance
- No vibration



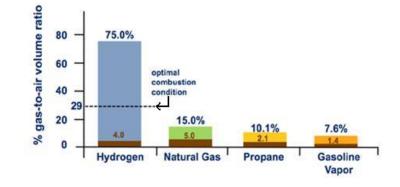
Comparison against other technologies Vs. battery

Advantages:

- No self-discharge over time
- Low maintenance
- Low OPEX (Replacement and air-conditioning)
- No thief of batteries
- Less environmental impact upon disposal
- Higher storage capacity
- Heat recovery option



Comparison against other technologies


Challenges Vs. others

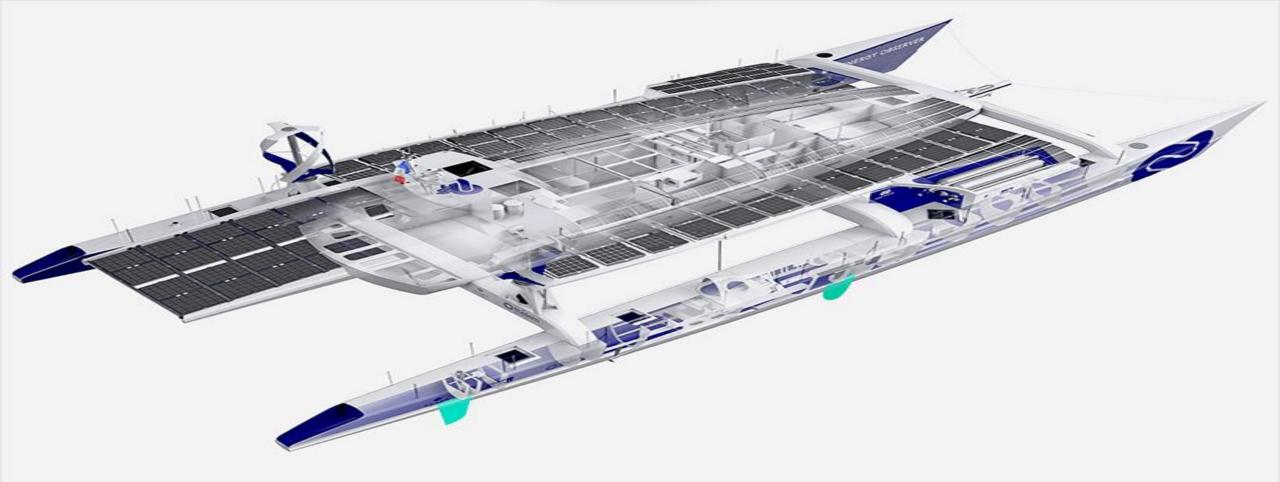
Challenges:

- System cost
- Sources and availability of hydrogen
- Unified regulations of fuel production, storage & distribution infrastructure
- Space availability on-board
- Safety concerns
- Public acceptance

Past fuel cell ship projects Outcomes

ENERGY OBSERVER

	Description	Year	Fuel			
LOVERS	(30x2) kW modularised HT-PEMFC tem developed and tested for accentralised auxiliary power supply on- board passenger vessel	Phase 1: 2009-2017 Phase 2: 2017-2022	Methanol	Succes Results CHP of Board CHP of Board ChP of Board ChP of ChP		
E4Ships – SchIBZ	100 kW containerised SOFC system developed and tested for auxiliary power	Phase 1: 2009-2017 Phase 2: 2017-2022	Diesel	System tested successfully on- shore.		
	^{supply of com} (FellowShip)					
Fellowship	320 kW MCF OSV 44.5% electrical eff		Successfully demonstrated			
Hornblower Hybrid	Hybrid ferry w No NOx, SOX and PV, wind and mercen	32 kW PEMFC, For rent in New York				
MC-WAP	Application of MCFC on-board large vessels	2005-2010	Diesel	150 kW MCFC,		
(Foss tug boat)						
METHAPU – Hybrid tug has shown to reduce 73% of particulate matters (PM), Viking Lady 51% of NO _x and 27% of CO ₂						
Zemship	tested on-board of a small passenger ship	2000-2013	nyarogen	Succession demonstration		



Fuel cell has been proven technically feasible in many of the demonstration and trial projects.

The main barriers to adoption is the supporting infrastructure and the CAPEX required.

There is no one technology that would resolve all the problems.

To obtain the optimal result, we have to explore the synergistic effect between different types of technologies, gathering the strength and eliminate/reduce weakness of each technology.

Towards Zero Emission Transport * Buildings * Power Generation *

http://erian.ntu.edu.sg

For further information please contact: Executive-Director ERI@N Email: D-ERIAN@ntu.edu.sg Energy Research Institute @ NTU (ERI@N) 1 CleanTech Loop, #06-04 CleanTech One, Singapore 637151 Phone: (65) 6592 1786 / 2468 Fax: (65) 6694 6217