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Optimization of Marine Energy Storage Systems for
Desired Lifetime, Energy Saving and Safety

e Typical applications of ESS

e Optimal sizing of ESS SINTEF

* Dynamic balancing of ESS



Typical Applications of ESS

* Peak shaving

e Strategic loading
* Spinning reserve
* Dynamic support

* Uninterruptible power supply

Load profile of harbor Tug
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Optimal sizing of ESS
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Optimal sizing of ESS

|4\ Battery_sizingGLI — >
Case Study Ferrycase "
Fuel Consumption for Ferry Case Study
Rating SFC Min. Power WMax. Power
g/KWh KW kW
G1 861 SFC_GG 0 851
3400 T T T
G2 643 SFC oo 0 543 ~39 d . ~6% d .
o reauction o reauction
3350 B
G3 0 SFC_GG 0 o
G4 0 SFC_GG 0 0 _ 3300
o
BESS <
Min. Installed Max. Installed DODmin DODmax Max. Power g 3250
Enerav kh Enerav kh % o C-rate Manufacturer =
BESS 0 0 0 ] 0 SAFT w g 3200
g
o
O 3150
Fuel price 0 g
Skg [
) ) 3100
BESS price 0 BESS lifespan 0
S/KWh year
Conv. price 0 3050
SR
Interest rate 3000
o 0 Evaluate AC (Baseline) AC+ESS 900kWh/900kW DC DC+ESS 200kWh/400kW
System

‘\ MATLAB



Dynamic balancing of ESS

* Aging of batteries could be different, leading to wasted capacity,
over-charge/discharge issues, and reduced battery lifetime.

* Failure of one battery will affect the operation of the whole battery
bank, necessitating extra fault-ride through schemes.

Wasted Energy Wasted Capacity
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Dynamic balancing of ESS

A modular multilevel converter-based ESS offers

» #

* Dynamic SoC balancing PR3 Y R 1 R T
. . VA,,l SM, | VBu|| sm, Veu | sm, : J t
* Modularized design = : : e
| SMiy | SMy SMy
. _"_ .yl = | —
* Fault-ride through }q _1 g Rurm
! !Larm
Leg: :
Larm
_| g IRarm
|SMWI +|sm B i
y |SM|-.. I v SMl\,; } %: ‘
Bl| I Cl -._._.‘.-.‘-‘ J I
_|SM;,.| SMay




Ultra-high Power Density Wireless Charging for
Maritime Applications

Advantages of wireless charging
Safety and Convenience
Free of corrosion
Autonomous system

Reduced labour costs

Key challenges:

Cost & efficiency

Power density (2kW/kg) d B NTNU ><m a rgy

Charging time (reduction by 50%) WARTSILA e e



Other Challenges for Full-electric Harbour Craft

* Power electronics efficiency/reliability (marine frequency converter,
battery charger, solar photovoltaic inverter, etc.)

Electrical Grid

Electrical Grid One-line diagram
of Norled’s MF
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Other Challenges for Full-electric Harbour Craft

* Hybrid energy storage system (HESS)

Different ESS applications demand different requirements

= Peak shaving

= Strategic loading

= Spinning reserve

=" Dynamic support
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