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Simulation + Optimization + Learning

Recognition

What are they?
Functionality, Advantage,
Limitation

Integration

How optimization
work with learning?
Role of Simulation

Extension

Expedite smart digital twins
Ecosystem and driving force

Opportunity

New research problem
& engineering trends

Methodology

Solutions applied or
to be developed

Synergy

Initiatives for
collaboration across
domain experts
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Measure

Recognition — What is “Learning”?

Scenarios / Actions
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Functionality

Analyze and obtain rules from the data,
and use the rules to predict unknowns

Advantage

A well-trained model can be quickly
applied, suitable for real-time scenarios

Limitation
Depends on historical data, not for optimal
decision-making or new scenarios
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Recognition — What is “Optimization”?

Functionality

In a specific scenario, look for decisions
to maximize performance measure

==
S
%

KR 2%

L7

l,,'lllllllm; o
.

”” "'
§“\\\\\ ’0‘ IIIIIIIIIIZ'O.‘?‘"‘ R

Advantage

Optimality ensured and not
necessarily rely on the historical data
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Limitation
T Long computational time, need to balance
speed and accuracy for real-time usage
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Recognition — What is “Simulation”?

Functionality
Model and simulate system behaviors
to characterize key characteristics

2 Advantage
-ﬁ- Describe close to reality, and quantify

the complex interaction in a system

| Limitation
SingaPort Studio, developed by CANGP Time-consuming evaluation with only
preset decisions and rules
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How Optimization works with Learning?

“Learning” need
to be “Optimized”

Predict solution space with
better performance to guide the
search for optimal solution

Select the proper model and
parameters to improve the
learning efficiency and quality

“Learning” from
“Optimization”

A process to minimize the
error between the knowledge
and the observed results

Combine 2 advantages into 1,
a key approach for real-time
intelligence
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Reinforcement Learning + Deep Learning
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Recognition — The Role of “Simulation”?
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Recognition — The Role of “Simulation”?

01 Realistic and Formal Problem Description

Needs to define quantify the stochastic and dynamic interactions
and system behaviors at the desired precision level

Efficient Virtual Deduction Environment

Need fast computation to deduce the dynamic impact of various
decisions under stochastic scenarios via complex system structure

03 Reliable Decision Verification Platform

Need to calibrate with the real system to verify the performance
of decisions made, and ensure credibility of verification results




. Analyzability NUS C‘X‘D
Extension — Smart [ } - e gbes
For Problems e Simulation Analytics with Learning

uDIgItal TWinS"? e Optimization via Search

¢ Ranking and Selection
¢ Simulation Evaluation

e Dashboard
¢ 2D/3D Animation

* VR/AR
For Human » Mixed Reality

| Visibility  fr—

For Machines

* XML/JSON

e Database

e Sensors

e Internet of Things
e Conceptual [
e Planning

¢ Operational
e Engineering

[ Fidelity ] For Reality 10
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Opportunity — New Trends for
Research & Development
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Simulation Modelling
For optimization and learning?

Computational Infrastructure

R rch Problem
esearch Proble Parallel, Cloud, Quantum Comp., FPGA

a Simulation-based Optimization
Multi-scenario, objectives, and fidelity

a Learning from Simulation
Capability to actively generate data

Engineering Development

- @ Connect in Real-World
loT, Mix-Reality, Online Decision-Making

11
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Methodology — Framework for Simulation
Optimization and Learning

SIMULATION IN OPTIMIZATION

Sim.-based Optimization
(Search Algorithm / Ranking & Selection)

TEAM@NUS
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Methodology — Improved Simulation

Modeling Formalisms

Destination Event Originating Event Destination Event
Condltlon T|me Delay Condition
U {(02)'}
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. . SChed“"“g {s= fEl(S)} Can;;';ng {s = fa(s)}
State Change State Change State Change
02DES Simulation Framework Precise but
Event-based Approach tedious
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Methodology - Improved Simulation
Modeling Formalisms
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Methodology - Improved Simulation
Modeling Formalisms
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Methodology - Learning with Simulation

Simulation Evaluation
Scenario
Parameters

Decision Performance

Variables m ; Simulator

M easures

Randam
Factors

H
:
:

Optimal Computing Rank &

Budget Allecator Selaction

Simulation-based Optimization
[ranking E Selection)

Type-lLearning

Large-Scale Seanch b Optirmal
Simulation-based Cptimization Algorithm LofT
[Large-5cale Seanch|

Adaptive Leaming Decision-
H _ﬁ_l.gnﬁthnm Making Rules
& Simulation Analytics

Scenario - Optimal Decision
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Simulation Evaluation :

Scenario : q
Parameters TVPE-II Learning

Performance

Decision H -
Simulator Measures

Variables

Random
Factors

Optimal Computing Rank &
Budget Allocator 1 Selection
mulation-based Optimization :
(Ranking & Selection)

Large-Scale Search B Optimal
Simulation-based Optimization Algorithm Decisions
(Large-Scale Search)

Adaptive Learning § Decision-
H Algorithm P Making Rules
: Simulation Analytics :

Scenario + Candidate Designs -
Optimal Choice
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Methodology - Learning with Simulation

) Simulation Evaluation :
Scenario

Parameters Type-l" Learning

Performance

Simulator 3 Measures

Random
Factors

Optimal Computing 4 Rank &
Budget Allocator P Selection

ESTmuIaﬂon—based Optimization

H Large-Scale Search : Optimal
i Simulation-based Optimization Algorithm DEAEETE
(Large-Scale Search) :

Adaptive Learning § Decision-

S © s Current + Past Observation =

i Simulation Analytics

) .. Future Observation
Scenario + Decision = Performance 20



Analyzability

Government
Agencies

Visibility
Initiatives for collaboration
across domain experts

9 Fidelity
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