

Ammonia Bunkering and Simulation of Release Scenarios

Dr. Liu Ming Maritime Energy &Sustainable Development (MESD) Centre of Excellence

14 October 2021

- 1. Ammonia As A Marine Fuel
- 2. Ammonia Handled As Bunker Vs Cargo
- 3. Ammonia Bunkering Concept
- 4. Safety Considerations
- 5. Process Hazard Analysis Software Tool (PHAST)
- 6. Ammonia Release Simulation
 - Sensitivity Analysis
 - Ship-to-Ship Bunkering
 - Truck-to-Ship Bunkering
 - Shore-to-Ship Bunkering
- 7. Summary

H₂O

Ammonia As A Marine Fuel

Background

- Green ammonia has the potential to be a carbonfree fuel to achieve GHG reduction goal for the marine sector.
- Ammonia bunkering deserve a timely study to prepare its adoption by the marine industry.
- > Applicable to many vessel types.

Ammonia Handled as Bunker vs Cargo

	As Cargo	As Bunker	
Working principle	Boiling liquid	Boiling liquid	
BOG and vapor return	Required	Optional	
Tank size ¹ & flow rate	Higher capacity, high flowrate	Lower capacity, relevant to energy content ²	
Quality	Chemical grade	Fuel grade	
Transferring frequency	Low, limited to tankers	Very high, applies to various type of vessels	1.
Dispersion study on release (land)	Limited to industrial sites	Not established	
Dispersion study on release (water)	Not established	Not established	2.
Operation experience	Limited to industrial use	Not established	
Transferring process	Comprehensive (FR, SR and NR)	Not established	
Operation mode	Less combinations	Up to 33 combinations ³	3.
Guidelines & Procedure	In place	Not established	

Numerous gaps need to be filled to enable successful ammonia bunkering operation.

- Cargo capacity around 20 ~ 60 K cbm for tankers; Fuel tank of Panamax container ship is around 5 ~ 6.7 K cbm of fuel oil.
- Based on MPA port statistics 2020, an average of 1200 tonnes marine fuel transacted per bunker call. For the same endurance, the quantity of ammonia shall be 3 times more.
- . MESD study.

Ammonia Bunkering Concept - States of Ammonia Liquid

Three types of transferring are considered:

- ✓ Fully refrigerated (FR)
- ✓ Semi-refrigerated (SR)
- ✓ Non-refrigerated (NR)
- Bunkering process shall be designed according to the physical states of ammonia
- Transferring between different physical states will create multiple bunkering configurations

Source: Diagram data extracted from The Engineering ToolBox

Ammonia Bunkering Concept - Possible Configurations

Bunker Supply						Cassette Bunkering									
	Truck		Bunker Vessel Shore-based		ed	Truck B		Bur	Bunker Vessel		Bunker Receiving				
FR	SR	NR	FR	SR	NR	FR	SR	NR	FR	SR	NR	FR	SR	NR	heeening
1	4	7	10	13	16	19	22	25	28			31			FR
2	5	8	11	14	17	20	23	26		29			32		SR
3	6	9	12	15	18	21	24	27			30			33	NR

33 possible configurations

Source: MESD, NTU

Ship to ship bunkering

Ship to ship bunkering with simultaneous cargo handling (SIMOPS)

Truck to ship bunkering

Ammonia Bunkering – Proposed Concept & Considerations

7

Stripping line can be optional

Ammonia bunkering concept for "FR to FR" and "SR to SR" applications Source: MESD, NTU 8

Ammonia Bunkering Concept (Non Refrigerated)

Stripping line is recommended

Ammonia bunkering concept for "NR to NR" application

Safety Consideration of Ammonia Bunkering

Actions should be taken long before the flammability of ammonia becomes a concern.

Establishment of safe operating zone for ammonia bunkering shall be based on the toxicity instead of flammability.

	AEGL Level 1: > 30 ppm for 10min
	Effects are not disabling and are transient
	and reversible upon cessation of exposure.
(AEGL Level 2: > 160 ppm for 1 hour
Toxicity	Irreversible or serious, long-lasting adverse
	health effects
	AEGL Level 3: > 1,100 ppm for 1 hour
	Life-threatening health effects or death
	LFL > 150.000 ppm
Flammability	Minimum concentration to cause fire in
, in the second s	presence of ignition source

Source: US EPA

(AEGL: acute exposure guideline level)

Process Hazard Analysis Software Tool (PHAST)

Passive Dispersion Phase

- Pasquill-Gifford model based on Gaussian diffusion model
- Dispersion coefficients are dependent on atmospheric turbulence and distance from source or duration of release

Modes of releases

- Continuous release (leaks from pressurized & atmospheric tanks, pipes, hose)
- Instantaneous release (catastrophic tank, pipe, hose rupture)
- Short duration and time-varying release

Discharge calculations

- Temperature, mass flow rate, velocity, liquid fraction @ exit of discharge
- Subsequent expansion (final droplet size) to atmospheric conditions

Application

- Provide ammonia cloud path from initial release point to far field dispersion downwind
- Predict the area affected and the concentration of ammonia cloud at any distance of interest (1 hour AEGL-2 160ppm and AEGL-3 1100ppm footprints)
- Evaluate the toxic effects of ammonia (3% lethality footprints)

Ammonia Release - Sensitivity Analysis*

Scenario A: 8" hose rupture at inlet manifold of receiving vessel for 60s Scenario B: Storage Conditions is simulated based on 5mins release from valve attached to storage tank.

Operational Parameters	Results		
<u>Storage Conditions (B)</u> FR: -33.4°C, 1 atm SR: -10°C, 2.91 bar NR: 30°C, 12 bar	FR has the smallest lethality footprint		
<u>Flow rate (m³/h) (A)</u> 500, 1000, 1500, 2,000	Doubling the flowrate from 500 m ³ /h to 1000 m ³ /h result in more than doubling the lethality footprint		
Release Elevation (A) 5m, 10m, 15m and 20m above sea level	The higher the elevation of release, the larger the lethality footprint		
Release Direction (A) Horizontal Vertical Upwards 45° Downwards 90° Downwards	Vertical upwards release result in the largest lethality footprint, 90° downwards release result in the smallest lethality footprint		
Isolation Time (A) 1 min, 2 min, 5 min	Doubling the isolation time result in doubling the lethality footprint		

Note: downwind passive dispersion is a mixture of plume and puff model

* Hypothetical results only, not meant for setting up a physical facility without verifications

Scenario C: 225mm leak from 10,000m³ atmospheric storage tank from a height of 3m above ground for 1 hour.

Weather Parameters	Results
<u>Atmospheric Stability</u> Unstable: Class A, B, C (day) Neutral: D (overcast, dawn, dusk) Stable: E (night)	The more unstable the atmosphere, the greater dispersion and/or dilution
<u>Wind Speed</u> Class C: 3, 5, 10, 20m/s Class D: 2, 5, 10, 20m/s Class E: 1, 2, 3m/s	Higher wind speed, greater dispersion downwind
<u>Humidity</u> 60, 70, 80, 90, 100%	Higher humidity, larger lethality footprint (Exception 100%: smallest footprint uplifted to a higher altitude)
Ambient Temperature Day 24-36°C Night 20-32°C	Higher ambient temperature, smaller lethality footprint
Surface Temperature Day 28-40°C Night 20-32°C	Higher surface temperature, larger lethality footprint

Note: continuous release with plume dispersion model during passive stage

Ammonia Bunkering - Hypothetical Locations

Port of Singapore – Anchorages and Fairways (source MPA, 2019)

Ammonia Release: Ship-to-Ship Bunkering*

Released mass distribution table

Released Mass (kg)	Day 3C	% of total mass	Night 2E	% of total mass
Total Mass released	17,040	-	17,040	-
Mass flashed as vapor cloud	3,384	19.9%	2,964	17.4%
Mass Rainout as pool	13,656	80.1%	14,076	82.6%
Mass vaporised from pool	5,260	30.8%	5,680	33.4%
Mass dissolved in sea	8,396	49.2%	8,396	49.2%

Bunker Vessel	: 17,500 m ³ NH ₃ carrier				
Receiving Vessel	: 14,800 TEU container ship				
Temperature	: -33.4°C, 1 atm (FR to FR)				
Connection	: 8" (203mm) hose, 40m long				
Flowrate	: 1,500m³/h				
Scenario		Release Elevation	Release Duration		
8" Hose Rupture at inlet manifold of container ship		18.35m	60 s		

* Hypothetical results only, not meant for setting up a physical facility without verifications

Ship to Ship Bunkering - Hazardous Zone (Without Mitigation)

- Lethality footprint instead of cloud coverage provides further understanding of the hazardous impact upon release.
- Night time release has a significantly lesser lethality footprint than that of day time.
- With mitigation, the lethality footprint can be reduced.

	Coverage					
Lethality (%)	Day	Night				
3	280 x 1,275 m	140 x 725 m				
10	210 x 1,000 m	120 x 550 m				
50	80 x 520 m	80 x 300 m				
99	20 x 125 m	30 x 100 m				

Simulated lethality footprint

Ammonia Release: Truck-to-Ship Bunkering*

Full bore hose rupture			0.4 m	60 s	
Scenario			Release Elevation	Release Duration	
Flowrate	: 20 m³/h				
Connection	: 2" hose, 15m long				
Temperature	:	: 30°C, 12 bar (NR to NR)			
Receiving Vessel	:	Tugboat			
Bunker Truck	: 20 m ³ ISO truck tank				

- Small release quantity (198 kg).
- No rainout.
- Vapor cloud forms a puff right after the end of the release.

- As the released quantity is very small and the ammonia cloud gets diluted and dispersed rapidly, the 3% lethality footprint only extends approximately 80 m downwind.
- With mitigation, the lethality footprint can be reduced.

\mathbf{I} at bality (0()	Footprint (m ²)						
Lethality (%)	Day	Night					
3	8 x 72 m	12 x 80 m					
10	4 x 46 m	7 x 53 m					
50	1 x 12 m	2 x 15 m					
99	0	0					

Simulated lethality footprint

Ammonia Release: Shore-to-Ship Bunkering*

Shore to Ship Bunkering – Hazardous Zone (Without Mitigation)

- The 3% lethality footprints reached a maximum downwind distance of approximately 400 m.
- The 3% lethality footprint in the night is larger than that for the day, as the more stable atmosphere in the night is able to sustain the vapour cloud concentration.
- With mitigation, the lethality footprint can be reduced.

	Footprint (m ²)					
Lethality (%)	Day	Night				
3	140 x 370 m	250 x 400 m				
10	120 x 370 m	200 x 400 m				
50	80 x 230 m	140 x 210 m				
99	20 x 60 m	20 x 70 m				

Simulated lethality footprint

Conclusion

- There are gaps to fill and studies required to enable ammonia bunkering operation despite the fact that ammonia has long been handled as cargo.
- Transferred as a boiling liquid, ammonia can be bunkered at three states: FR, SR and NR, by two similar processes developed by the study.
- Far-field simulations were conducted to provide the cloud coverage and the lethality footprint of several ammonia release scenarios.
- It is expected that mitigation measures be developed to reduce the impact of ammonia release.

Project Partners

ASTI, ABS, EPS, Jurong Port, Vopak, PSA, ExxonMobil, Itochu Group, MOL, Hoegh LNG, MAN ES, TOTAL Marine Fuels...

Summary

Project Report Release

• Early 2022

Further Enquiry

Please contact: d-mesd@ntu.edu.sg