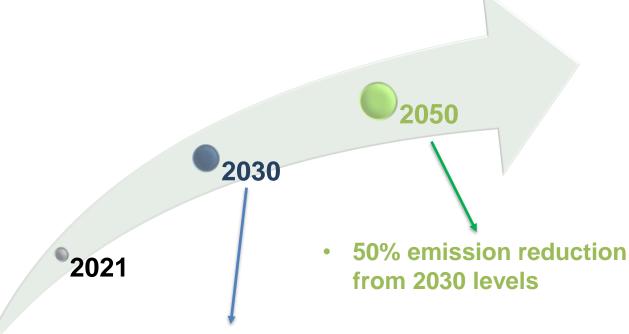


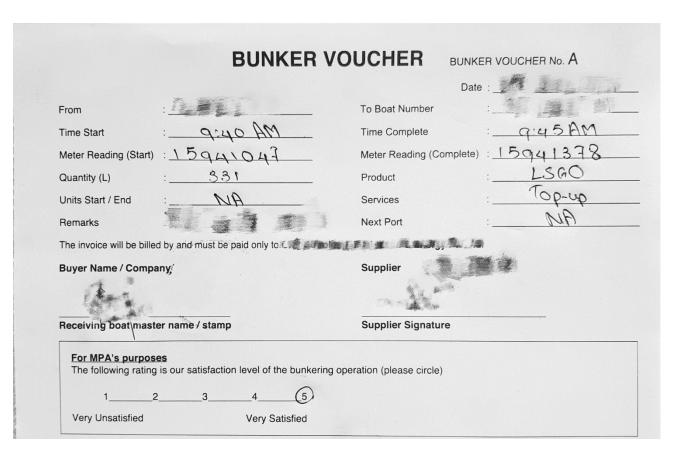
Data-driven Analysis on Energy and Emission Performance of Harbour Craft in Singapore Port Water

Dr Xiao Zengqi
Research Fellow
Maritime Energy & Sustainable Development (MESD) Centre of Excellence
Nanyang Technological University

11 October 2022



Background and Objective


Overview on Types of Singapore Harbour Craft

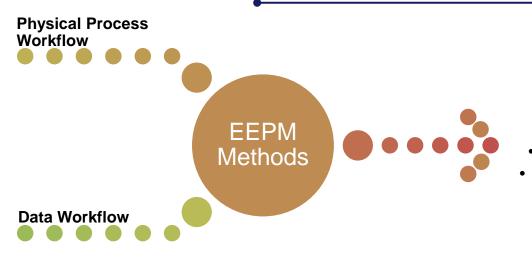
Prefix	Description
SP	In-port limit carriage of passengers
SC	In-port limit carriage of dry or packaged cargoes
SB	In-port limit carriage in bulk of petroleum, liquefied gases, liquid chemicals or vegetable/animal oils
ST	In-port limit for towing, pushing or pulling other vessels.
SR	In-port limit for any other purposes

MPA's Maritime Singapore Decarbonisation Blueprint on Singapore Harbour Craft

- All harbour craft on low-carbon energy solutions
- 15% emission reduction from 2021 levels

An example of bunkering record for Singapore harbour craft

Objective of this presentation:

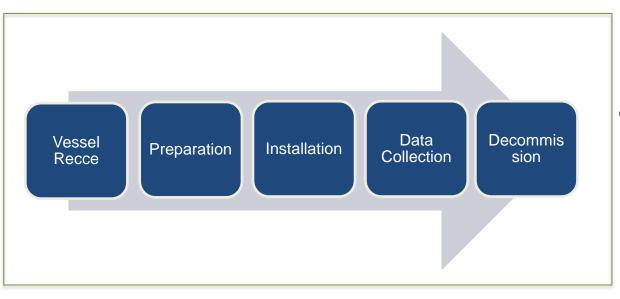

To introduce and illustrate MESD's Energy and Emission Performance Measurement (EEPM) method for Singapore Harbour Craft

Background and Objective

Bunker records and tank sounding:

- The most popular ways and probably the only ways to monitor a harbour vessel's energy performance
- Cost-effective and quite reliable in monitoring fuel consumptions at aggregated level
- However, the usefulness is solely reliant on the bunkering and tank sounding frequency
- Lack data resolution, not very useful for vessel performance optimisation

Energy and Emission Performance Measurement (EEPM)



EEPM Outcome

- Operational profile
- Engine performance
- Emission performance

- ✓ MESD's in-house development with a filed patent
- ✓ Patent name: A Method to Obtain Fuel Consumption and Emissions in Marine Propulsion Engines under Actual **Operating Conditions**
- Targeting vessels that do not intend to install permanent sensors
- ✓ A holistic method from onboard data collection to data analysis

Physical Process Workflow

Data Workflow Pre-board Data Data integrity analysis preparation Calibration & Settings Data check, daily tank SFOC, emission profiles of sounding & record of of instruments major exhaust gases operation modes Data processing & Onboard filtering measurement Sync data with operation mode, Measurement & backup

convert GPS data to speed & distances

EEPM: Portable Instrument and Data

Available Instrument

GPS Sensor

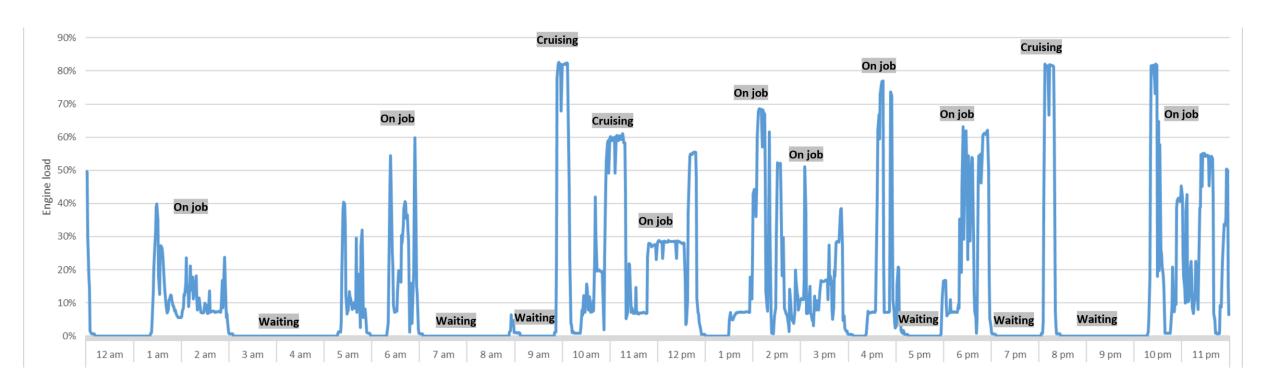
Shaft Power Meter

FO Flow Meter

Exhaust Gas Analyzer & Flow Meter

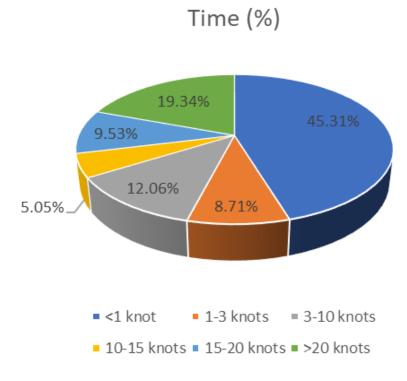
Electric Power Analyzer

RH & Temp Meter



Available instrument for EEPM

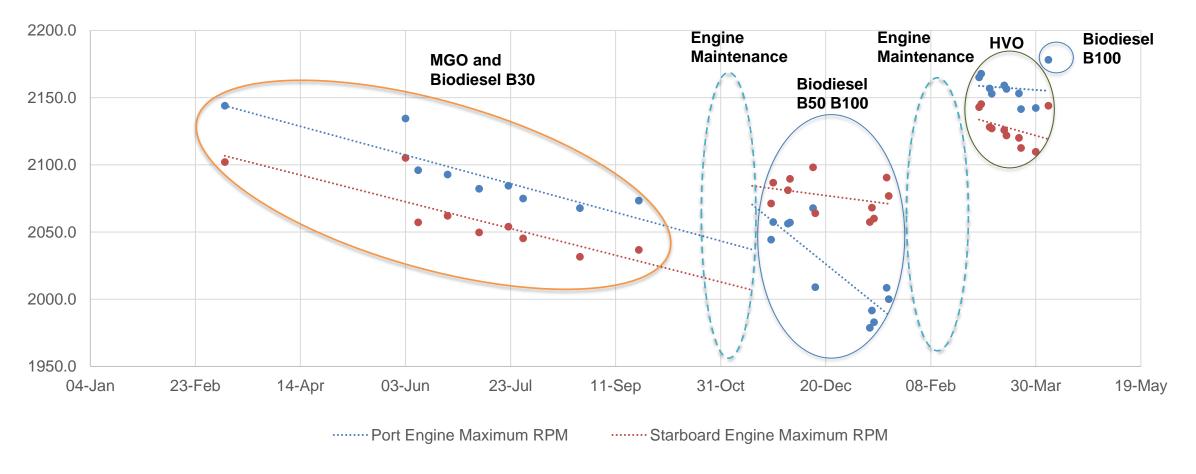
Instrument	Parameter	Current Status		
FO Flow Meter	Volumetric Flow Mass Flow Flow Velocity	Fuel consumption record manually using sounding method		
Shaft Power Meter	Shaft Power Shaft Speed Torque	Not recorded		
Exhaust Gas Analyzer & Flow Meter	CO_2 CO SO_2 NOx NO_2 O_2 CH_4 Exhaust Temp Exhaust Flow	Not recorded		
Temp & RH Sensor	Temperature Humidity	Can be recorded manually by crew		
Electric Power Analyzer	Ampere Voltage Frequency	Not recorded		
GPS Sensor	Speed Location Time	Through AIS, but historical records may not be available		


List of key parameters that EEPM can measure

EEPM Results Illustration: Operational Profile

Engine load profile of a ST vessel on a day

EEPM Results Illustration: Operational Profile and Emissions



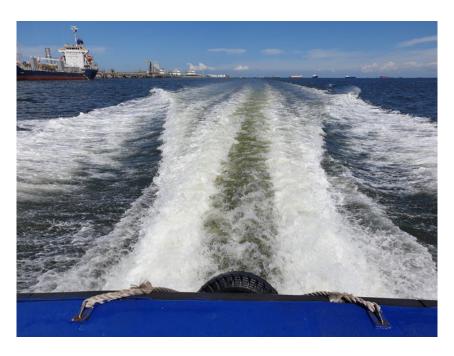
Recorded time (%) spent in each vessel speed category for a SP (<12 Pax) vessel

Main Engine	Engine Load 0-20%	Engine Load 20-40%	Engine Load 40-60%	Engine Load 60-80%	Engine Load 80-100%
Measured Time (min)	421.0	77.0	128.0	19.0	4.0
Average Engine Load	3.7%	32.7%	48.2%	64.3%	83.5%
Average RPM	679.8	1431.2	1643.6	1811.7	1976.9
Average Vessel Speed (knot)	1.6	12.7	15.0	17.9	19.3
Total Distance Travelled (NM)	10.9	16.3	32.0	5.7	1.3
PT Total CO2 Emission (kg)	51.9	65.5	159.1	31.8	9.0
PT Total NOx Emission (g)	1499.2	1016.8	2200.9	392.7	91.3
PT Total CO Emission (g)	195.8	45.7	96.6	17.6	5.2
CO2 per Hour (kg/h)	7.4	51.0	74.6	100.5	134.7
NOx per Hour (g/h)	213.7	792.3	1031.7	1240.1	1369.4
CO per Hour (g/h)	27.9	35.6	45.3	55.5	78.7
CO2 per Distance (kg/NM)	4.8	4.0	5.0	5.6	7.0
NOx per Distance (g/NM)	137.8	62.2	68.8	69.2	71.0
CO per Distance (g/NM)	18.0	2.8	3.0	3.1	4.1

An example of exhaust emissions of a SC vessel at different engine load

EEPM Results Illustration: Engine Performance

Maximum engine RPM trend of a SC vessel over a year


EEPM Results Illustration: In-Depth Analysis

Dependent Variable: CO ₂ Emissions	Coefficients	Standard Error	T-Stat	P-value	
Intercept	-0.351	0.051	-6.877	<0.001	
Maintenance effect	-0.377	0.021	-17.584	<0.001	
Time to last maintenance	0.00154	0.00011	13.470	<0.001	
Average cubic RPM	6.44E-10	1.45E-12	444.387	<0.001	
Engine room temperature	0.00834	0.00114	7.336	<0.001	
Biodiesel blend ratio	0.140	<mark>0.014</mark>	10.254	<0.001	
HVO blend ratio	0.0325	<mark>0.0289</mark>	<mark>1.127</mark>	<mark>0.260</mark>	
F-value	36522.90				
Significance F	<0.001				
R-square	0.98309				
Adjusted R-square	0.98306				
Number of samples	3777				

An example of statistical analysis on a SC vessel emission performance

EEPM Illustration: Actual Photos

Instrument installation

Vessel on job

Onboard data collection

Thank you

Website: www.ntu.edu.sg/mesd-coe

Email: d-mesd@ntu.edu.sg

https://www.linkedin.com/company/mesd-coe LinkedIn:

